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ABSTRACT 

Data-takes on two ascending orbits of the Shuttle Imaging Radar-B 

(SIR-B) over an agricultural test site in west-central I l l inois were used to  

establish end-to-end transfer functions for conversion of the digital 

numbers on the 8-bit image t o  values of  the radar backscattering 

coefficient do (m2/m2) in dB. The transfer function fo r  each data-take 

was defined by the SIR-B response to an array of six calibrated point 

targets o f  known radar cross-section (transponders) and t o  a large 

number of area-extended targets also wi th known radar cross-section as 

measured by externally calibrated, truck-mounted scatterometers. The 

radar cross-section of each transponder a t  the SIR-B center frequency was 

measured on an antenna range as a function o f  local angle o f  incidence. 



Two truck-mounted scatterometers observed 20 t o  80 agricultural fields 

daily a t  1.6 GHz with HH polarization and a t  azimuth viewing angles and 

incidence angles-equivalent t o  those of the SIR-6. 

The form of the transfer function i s  completely defined by the SIR-6 

receiver and the incoherent averaging procedure inorporated into 

production of  the standard SIR-8 image product. Assuming that the 

processing properly accounts fo r  the antenna gain, a l l  transfer function 

coefficients are known except for the thermal noise power and a system 

"constant" which has been shown t o  vary as a function of  uncommanded 

changes in  the effective SIR-6 transmit power. For each orbital pass, the 

SIR-6 thermal noise was estimated from surface areas expected t o  yield 

specular reflection, and the system "constant" was determined for each 

area on the SIR-6 image containing a target o f  known radar cross section. 

Both the point targets and the area-extended targets were found t o  yield 

nearly identical results wi th a mean difference of approximately 0.1 d8. 

For a given date, the standard error of the estimate for the system 

"constant" as derived by this method i s  found t o  vary from t 0.85 dB to 5 

1.35 dB. The interpass variance of the transfer functions was found t o  be 

related t o  the observed variance of the effective SIR-B transmit power. 

Application of the system transfer functions t o  SIR-6 imagery permitted 

realization o f  science objectives by allowing comparison o f  multidate 

imagery on a common basis. 

Five of the six transponders also operated as calibrated receivers. 

For each of  six data-takes, two ascending and four descending, the 

receivers were distributed over an area extending approximately 20 km in 

both range and azimuth directions. For each SIR-B data-take, each 

receiver recorded the time history o f  a voltage proportional t o  the 

incident power density a t  the ground. The observed azimuth beam form 

appeared t o  be nomfnal with respect to  specifications. Preliminary 
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analysis of the range pattern, which could not be ascertained in a direct 

fashion w i th  statistical confidence, indicates that the pattern may be 

nominal provided-that the t r u e  antenna boresight is estimated t o  an 

accuracy of  +/-  2' v ia preliminary estimates of the STS ephemeris. 

Finally, the uncommanded loss of effective transmit power, which has 

been attributed t o  arcing, was found to  average 7.1 dB and vary from 
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pass-to-pass by approximately 3 dB. 
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1 .O introduction 

In October of 1984, the Space Shuttle Challenger carried the Shuttle 

Imaging Radar (SIR-8) as part of the payload on the STS-41G mission. The 

SIR-8 instrument is  an "-polarized L-band SAR ( 1.28 GHz) capable of 

operating over incidence angles from about 15' t o  60' re la t i ve  t o  nadir. 

Although the mission was plagued by a series of hardware malfunctions, a 

vast quantity of data was acquired over both water and land surfaces. 

Much of this data was digitally recorded and transferred via TDRS- 1 for 

subsequent digital processing by the Jet Propulsion Laboratory. The 

digital 5AR correlator incorporates both known and modeled system 

parameters in  an attempt t o  produce digi ta l  image products free from 

system-related artifacts both in range and azimuth. 

Since many of the science objectives of the mission required relative 

calibration of  the SIR-8 imagery in order t o  compare either multiangle or 
mult isi te observations, an important technical issue i s  the stabil ity of the 

SIR-6 instrument and the adequacy of the antenna patterns assumed in the 

SAR correlator. in addition, i t  is  desireabie t o  evaluate existent means 

for providing end-to-end system transfer functions for the conversion of 

image digital number into units of radar backscattering coefficient do 

(mVrn2). 

In order t o  address these technical objectives, a test  site was 

established in west-central Ill inois a t  the intersect point of  projected 

ascending and descending SIR-B coverage. Preceding the ascending 

data-takes, the Challenger generally conducted orbital alignment 

maneuvers so that the shuttle ephemerides could be precisely determined. 

During the mission, six digital data-takes over this s i te  were obtained 

from three azimuth view angles and with local angles of incidence from 

17' t o  59' as given in Table 1.  Of the six data-takes, digital imagery 

was produced for f ive swaths as illustrated in Figure 1 .  
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On the ground, the test site comprised an irregular area of roughly 

250 km2 intended t o  transect both ascending and descending image swaths. 

For science objectives related to  the radar backscattering from vegetation 

canopies and underlying soil, this area was both extensively and 

intensively monitored on a daily basis for soil moisture and canopy 

biophysical conditions. For technical objectives, the site was 

instrumented wi th  an array of six point targets and traversed on a daily 

basis by two L-band truck-mounted scat terome t ers. 

The point targets, act ive radar calibrators (ARCs), function both as 

calibrated receivers and as transponders. Each ARC consists of two patch 

antennas (transmit and receive) connected by a detection circuit  and a high 

gain RF amplifier 111. As a receiver, interfacing the ARC wi th  an 

instrumentation tape recorder permitted ret r ieva l  of  the time-history o f  

the SIR-8 transmit power to yield azimuth cuts of  the SIR-8 antenna 

pattern. During each of the six SIR-8 data-takes, the ARCs were 

distributed over the test site wi th  spatial seperations of up to  20 km in  

range and/or azimuth. Subsequent processing of this data using the ARC 

transfer functions and estimates of the shuttle position and velocity t o  

calculate the SIR-8 power density a t  the ground also provided a means for 

examination of the cross-track (range) antenna pattern and comparison o f  

pass-to-pass variability in the SIR-6 transmitter's output power. 

As transponders, the ARCs perform as point targets o f  known radar 

cross section. When properly deployed within an area characterized by a 

relatively low do, the ARC i s  imaged as a bright target which serves as a 

calibration reference for establishment o f  the image transfer function. 

Although six ARCs were deployed within the test site during each 

data-take, misalignment of the SIR-8 data window wi th  respect t o  the 

test s i te on the descending orbits (Figure 1 restricted imaging o f  the 

ARCs t o  primarily the ascending data-takes (DT 49.2 and 97.2). 
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An additional method for computation of the. image transfer functions 

was provided by the observation of many area-extended targets by the 

truck-mounted scatterometers. Two FM-CW scatterometers were used; 

both were operated a t  1.6 GHz wi th  HH polarization. On a daily basis, each 

system observed 40 t o  80 different agricultural fields distributed along 

either north/south o r  eastlwest transects of the site. Scatterometer 

observations were made a t  angles of incidence and azimuth view angles 

equivalent t o  those for the SIR-6 on any given orbit. The system output 

products were do as externally referenced t o  a Luneberg lens. Each Go is  

the average o f  a t  least 100 independent samples depending upon angle of 

incidence. As a consequence, a statistically significant sample 

population was created for establishing the transfer function for each 

image which covered the area co-observed by the truck systems and SIR-B. 

2.0 SIR-8 Antenna Patterns and Transmit Power 

For each of the six SIR-8 data-takes over the site, the ARCS were 

~ s e d  t o  record the time history of the incident power density. The output 

voltage o f  the ARC is proportional t o  the received power a t  the input t o  

the ARC receiver. The transfer function of each ARC was established in 

the laboratory by injecting signals of pulse width z = 30.3 ps and 

monitoring the output voltage as a function of input power Pr and pulse 

repetition frequency (PRF) from 1200 Hz to  2000 Hz: 

..-- 

VOut = K (PRF) x P, 

where K(PRF) i s  the ARC transfer coefficient. 
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2.1 Azimuth Patterns 

An example of the time-history of an ARC output voltage recorded 

during a SIR-8 overpass on 1 1 October, 1984 i s  shown in Figure 2. 

Depending on the level of the output power of the SIR-B transmitter, the 

ARC receivers generally recorded the second or  third sidelobes within the 

linear portion o f  the receiver response. The average observed sidelobe 

levels are given in  Table 2 as - 12.0 dB and - 10.3 dB for the lead and lag 

sidelobes (relat ive t o  STS attitude) respectively. The half-power (3dB) 

and null-to-null beamwidths 8 are calculated from estimates of the STS 

velocity and range t o  target as derived from the preliminary ephemeris 

data. The average preliminary estimate of @3dB i s  1.1 '. The variances 

around the calculated means are found to  be very small. 

The azimuth cuts recorded by the ARCs exhibit no evidence o f  

pulse-to-pulse variation in SiR-B transmit power over their respective 3 

t o  4 second time histories @5,000 pulses). All measured patterns are 

smooth and wel l  behaved. 

2.2 Range Patterns 

The range antenna pattern assumed by JPL in the SIR-6 digital 

correlator is  shown in Figure 3. The research objective was t o  use the 

ARC measurements t o  verify this model for the antenna as deployed in  

orbit. 

Since the range (elevation) pattern of the SIR-6 antenna can not be 

measured directly from the observations made by a single ARC, it must be 

inferred from the observations o f  many receivers distributed in the range 

direction. The deployment of  the ARCs with respect t o  any given shuttle 

orblt is  depicted schematically in Figure 4. Typically, the ARCs were 

distributed over a 15 km t o  20 km range extent which roughly corresponds 
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t o  So in  angle depending upon the slant range for a particular orbit. As a 

consequence, i t  was possible t o  examine only a l imited portion of  the 

range pattern by forming a composite of the ARC measurements f o r  a given 

orbital pass. Ideally, many more ARCs o r  other receivers should be 

distributed over a greater range extent in order t o  clearly define the shape 

of the pattern. 

Because the transmit power from SIR-8 varied w i th  time (probably 

due t o  arcing in  a coaxial cable), the differences in incident power density 

recorded a t  the ground by the ARCs were not solely related to  the range 

antenna pattern. Hence, the ARC output voltage was used t o  estimate the 

product of the transmit power Pt and the antenna gain Gt by: 

where Fi is  the siant range (as estimatea a t  the stated angie of the antenna 

boresight relative t o  nadir using the preliminary ephemerides and 

assuming a spherical earth) and Aeff i s  the effective apperture of the ARC 

(as measured for each ARC on an antenna ran "~ )  3b.l. 

In Figure 5, Pt Gt is  plotted for each ARC measurement as a function 

of the angular offset between the position of the ARC and the ground 

intersect of the antenna boresight as calculated from the preliminary 

ephemerides. The least-squares fitting of the assumed beam pattern (as 

shown in Figure 4) t o  the measured data yields the curves plotted in Figure 

5. If it is  assumed that the modeled range pattern is  correct, then it i s  

clear that: ( 1 )  there is a significant variance in SIR-B pass-to-pass 

transmit power as indicated by the peaks o f  the curves plotted in Figure 5, 

and (2) the estimates of  the antenna boresight derived from the 

preliminary ephemerides can lead t o  as much as a 3' error in the 

application of the antenna pattern to  the radar data in the digital 

correlator. The angular offsets depicted in Figure 5 are believed t o  be the 
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result o f  two factors: ( I  ) errors in the preliminary ephemerides and (2) 

discrepancies between the true antenna attitude as deployed in the shuttle 

bay and the shuttle attitude as measured in  the nose of the shuttle. The 

f i r s t  factor can be tested and may be correctable by using ephemerides 

based upon the shuttle "path tape" provided by the Johnson Space Center 

six months after the mission. The second fac tor  is  related t o  attitude and 

location dependent thermal loading on the shuttle which, a t  present, yields 
a noncorrectable error source with an uncertainty estimated t o  be 2 1 0 . 

Hence, while the true range pattern o f  the SIR-B antenna cannot be 

defined from the ARC measurements, i t i s  shown that errors in the 

preliminary ephemerides can lead t o  substantial misapplication of the 

'modeled antenna gain function in digital processing of the SIR-E3 data i f  

the assumed model i s  correct. The expected magnitudes of these errors 

are shown graphically in Figure 5 and listed in Table 3. Conversely, the 

ARC data does not indicate that the assumed model for the range gain 

pattern i s  incorrect. By assuming the true boresight location errors t o  be 

as indicated in  Table 3 for each orbit and assuming Gt t o  be time constant 

(wherein only Pt varies from pass-to-pass), then normalizing a l l  ARC data 

with respect t o  the maximum Pt Gt and boresight angle error for each pass 

yields the data composite shown in Figure 6. This approach, while 

certainly less than rigorous, indicates that the assumed beam form could 

be quite accurate. 

2.3 Transmit Power 

For the six orbits observed, the maximum Pt  G t  estimated from the 

ARCS varied from 85.1 dBm t o  88.0 dBm (Table 3). Since it i s  reasonable 

to  assume that Gt was time-constant, Pt was found t o  vary over a 3 de 

range. Given a nominal transmit power o f  1 Kw (60 dBm) and a maximum 
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Gt of 33.8 dB (from the antenna manufacturer and thermal vacuum tests), 

the maximum P t  Gt was expected t o  be 93.8 dBm as compared t o  the 

average observed (of six passes) maximum Pt Gt of 86.7 dBm. Hence, the 

average observed loss in the expected transmit power i s  estimated as 7.1 

dB wi th  a pass-to-pass standard deviation of 1.1 dB. 

The within-pass variability of SIR-B transmit power can be examined 

from plots of cross-track (range) averages of digital number as a function 

of time. For the Il l inois data, these averages were found to  be relat ively 

constant yet  they typically exhibited a short term fluctuation about the 

mean of +, 0.4 t o  0.5 dB and a period of about 0.25 t o  0.33 seconds. 

However, since the test si te i s  a mixed agricultural scene wi th  scattered 

towns, these variations may be scene related and not necessarily due t o  
8 t Q  . - b . . - b : - - -  
I IULCUOCIVI13 in SIR-8 transmit pcrwer. A s m p k  i s  shown iii Figure 7 for  

data-take 97.2. It is  planned t o  i terate this analysis considering only 

scene elements for a single land-cover category (such as corn fields) once 

the SIR+ data i s  fully registered tc! extensive anci!!ary data pertaining t o  

the along-track crop-type distribution. As mentioned previously, no 

random pulse-to-pulse variation in Pt was recorded by the ARC receivers. 

3.0 SIR-B Image Calibration 

Many potential applications of  orbital imaging radar involving 

quantitative parameter retrievals require str ict standards of relative, i f  

not absolute, radiometric calibration o f  the imagery. Effective methods o f  

image calibration enable the comparison o f  data derived over time, 

between sites, and amongst suites o f  sensors using generalized 

algorithms. Considerable e f fo r t  was taken t o  examine two external 

calibration methods to  provide end-to-end transfer functions for the 



SIR-8 imagery obtained over the Illinois test site. Targets of  known radar 

cross-section were provided by the ARCS (as transponders) and by 

area-extended agricultural fields observed by two truck-mounted 

scatterometers. 

Application of these methods t o  the SIR-B data was partially 

frustrated by the fact that many passes did not image the portion of the 

test s i te containing targets of known radar cross-section (Figure 1 >. 

However, the ascending data-takes (49.2 and 97.2) preceded by STS 

attitude alignment manuevers did image this area and consequently form 

the basis o f  the ensuing discussion. 

3.1 Image Transfer Function for SIR-8 Digital Data 

The form o f  the transfer function for the conversion o f  SIR-B image 

digital number DN to relative units of radar backscattering coefficient do 

(m2/m2) i s  completely defined by the SIR-8 radar and the image formation 

processing. 

To relate DrN t o  a*, use wl i l  be made of large agricuiturai f i e lds  that 

are represented by a large number of pixels on the SAR image. Thus, for 

each f ield an average digital number, m, can be obtained by averaging over 

a l l  the pixels of that field. This DN value corresponds t o  the mean 

scattering coeffieicnt of the f ield do, which is exactly what was 

measured by the truck scatterometers during the SIR-6 mission; for each 

field, the scatterometers made several hundred measurements of the 

backscattered power in order to arrive a t  the mean backscattering 

coefficient do. 

For a given pixel the JPL processor produces a digital number DNi 

that is  proportional to  the square-root of  the power PI received from the 

ground cel l  corresponding to  the pixel 1 on the processed SAR image, 
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- _  DNi = K Pi1/* (3) 

- 
where K is a scaling factor consisting o f  the receiver gain and an 

arbitrary image scaling coefficient. I f  the field under consideration 

consists of M pixels and Pi is a random variable with mean value F, then 

for very large M 

where the order of the averaging and square-root operations have been 

reversed because the Central Limit Theorem is applicable (M is large). The 

power Pi is given by 

1 where Vsi and Vni are the backscattered signal voltage and the receiver 

noise voltage, respectively, both o f  which are random variables. The 

voltage Vsi is a random variable because of scintillation (signal fading) 

resulting from the coherent addition of the signals backscattered from 

the scatterers in the ground cell corresponding to pixel i. The voltage V,i 

is a random variable with a mean Vn = 0. The average value of Pi is 

I 
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whereFs and Fn are the mean signal and noise powers. Furthermore, 

- _  

where Pt is the transmitted power; Ge, AeJ and Re, are the antenna gain, 

resolution cell area and range t o  target, respectively, at incidence angle 8; 

and h i s  the wavelength. The constant Ce represents the factors 

multiplying doe &. 

Cornblning Eqs. 4, 5, and 7, gives 

Solving for aoe leads t o  

In dB, 

where O< = K2 p,, and #I = 10 log (Ce % K2). 
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For each SIR-B digital image, the scaling factor K is given by the product 

of the. receiver gain and the image scaling coefficient; is readily 

calculated; Ce is a modeled function of Pt, Ge, and Re; and Pn can be 

approximated from the DN obtained for an area expected t o  be in the noise 

(Le., the DN from a specular surface such as a smooth water body). 

Ideally, all coefficients in Eq. 9 are known. In practice, Ce is imperfectly 

known due, primarily, to uncertainty in Pt and Ge. 

3.2 Area-Extended Targets 

In thg ensuing preliminary analysis, only the SIR-B data from the 

ascending orbits wi l l  be considered. This data was reprocessedusing the 

post-mission JSC path-tape to provide the ephemerides which should 

leave only small residual errors related to the antenna boresight position 

and negligible ranging errors. For each agricultural field observed by the 

truck-mounted scatterometers, a mean digiiai number was computed as 

the average of 80 to 120 pixels which excluded boundary pixels and point 

target responses. The scatterometers operated at angles of incidence and 

azimuth view angles identical to that for a given SIR-8 pass, and produced 

mean do f rom =: 100 independent samples per field. 

Each data pair (Le., mean SIR-B DN and mean do), was used to provide 

an independent estimate of the amalgamated transfer coefficients via 

Eq. 10. The noise power Fn is determined f rom small water bodies. The 

resultant variance in the 8 transfer coefficients as calculated for each 

discrete area-extended target should be related to : (1) fading in the radar 

cross-sections measured by either the truck-mounted scatterometers or 

the SIR-I3 target response, (2) errors in the antenna gain function assumed 
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i n  the digital processor, and/or (3 )  fluctuations in the SIR-8 transmit 

power. 

The effects-of fading are reduced by the averaging of relatively large 

sample sizes. The 2 d uncertainty due t o  fading is calculated to  be 5 0.5 

dB in  both cases. The test fields were distributed over a distance of 

about 20 km in  both range and azimuth. Over this distance, Figure 7 shows 

a one d uncertainty in range-averaged Pt of 5 0.5 dB. In addition t o  the 

t w o  preceding random processes, errors in the application o f  the antenna 

gain pattern in the image processing should yield a range dependent bias in 

the calculated transfer coefficients. 

The calibration results from data-take 97.2 are plotted in Figure 8. 

The average transfer coefficient 8 determined from 40 observations i s  

47.86 d8 with a standard deviation of 0.85 d8. No distinctive trends are 

G ! X W ~ C ~  i~ $ JS 3 f u i ~ t i o f i  of eith3.r r ~ f i g e  OT Z i i m i i i h  ioeaiioris of ihe 

area-extended targets. 

3.3 Point Targets 

A calibration approach similar to  the preceding was used for the 

SIR-8 response t o  point targets. The SAR data had been processed t o  

produce 4-lOOk images t o  reduce image speckle. When a point target of 

radar cross-section dARC i s  present in a homogeneous ground cell o f  area 

Ae and average backscattering coefficient d'b, the received signal 

voltage, in the absence of fading, i s  
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The background backscattering coefficients Gob ( o i  the six cells 

within which the six ARCs were later deployed) were measured by the 

truck-mounted scatterometers and found t o  vary from - 17 t o  - 15 d8 a t  

0 = 30' (which is  the antenna elevation angle for orbits 49.2 and 97.2). 

The ARCs had radar cross-sections (RCSs) between 25 and 28 dBrn2, and 

A* = 28.9 dBm2. Thus, the background contribution db % is smaller than 

the ARC contribution by about 12 t o  16 d6. For a four-look average, a 14 dB 

r a t i o  of target RCS t o  background RCS implies a measurement standard 

derivation of + 1.6 dB and - 1.9 dB due to signal fading variations of the 

background [2]. These error l imi ts  could have been improved by using less 

attenuation in the ARCs and thereby increasing dARC : db. For example, 

aARC : ab  = 20 dB yields a fading uncertainty of about 2 1 dB. 

When considered alone for data-take 97.2, the ARCs yield an average 

estimate o f  the transfer coefficient 8 = 47.94 dB wi th  a 1 cf deviation o f  

1.34 dB. This deviation is within the error bounds related t o  fading of the 

background contribution. In terms of the mean 8 coefficients, the point 

targets alone agree with the area-extended targets t o  within 0.1 d6. The 

average transfer function of the two  approaches i s  plotted i n  Figure 8 for  

comparison wi th  the data. The larger standard deviation about the mean 

fo r  the point target calibration results can be attributed t o  the small 

sample size (Le., number of ARCs) and t o  the effects of fading. 

In order to check the accuracy of the combined transfer function fo r  

data-take 97.2, doSIR-8 was calculated from the mean DN for each target 
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and regressed versus the do measured by the truck-mounted 

scat terometers. 

~'SIR-B ( dB) = 10 log ( m2 -144 ) - 47.9 

The uniform distribution o f  tho scatter in Figure 9 indicates that the form 

o f  the transfer function is appropriate. In addition, the scatter is shown 

to be within the 95 % confidence interval related to fading. 

3.4 Between Pass Stability 

The SIR-B transfer function derived fo r  the other ascending pass over 

the Illinois site!, data-take 49.2, is shown in Figuro E! fnr comp.rati\:e 

purposes. The between-pass difference of thE average transfer 

coefficients 8 was found to be 2.7 dB. This between-pass difference is 

approximately that estimated by insertion of a11 known or modeled 

quantities into Eq. 10 for the two passes with the assumption that there 

is a 2.4 d8 difference in the SIR-8 transmit power as recordedby the 

receivers (Table 3). This strongly suggests that the SIR-B was stable 

over time except fo r  the uncommanded fluctuations in the transmit 

power. 

4.0 Discussion 

Observations a t  the Il l inois test  site showed the SIR-B antenna t o  be 

fu l ly  illuminated and t o  produce a nominal azimuth antenna pattern. 

Analysis of  the same data wi th  respect to  the range pattern i s  not 

conclusive, but indicates that the range antenna pattern assumed in 

processing may be accurate assuming that the boresight location can only 
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be estimated t o  within 2' from the preliminary ephemeris data. The SIR-6 

transmit power was found t o  be * 7 dB below specifications and exhibit a 

pass-to-pass variability of 3 dB. Pulse-to-Pulse variation of  Pt was not 

observed. Observed fluctuations in  range-averaged digital number 

(2  0.5 dB) cannot be unequivocably ascribed to  variance in Pt and may be 

caused by the true scene variance. 

In spite of variance in  the SIR-B transmit power, end-to-end transfer 

functions generated from either point targets or  area-extended targets 

were found to  yield close agreement (within 0.1 dB) for a given pass. 

Variance in  the transfer coefficients established by either method were 

found t o  be within the confidence intervals expected from fading 

considerations. Pass-to-pass changes in  the transfer coefficients agree 

w i th  observed differences in SIR-B transmit power. 

In view o f  these findings, it is  concluded that targets of known 

cross-section can be readily and effectively used t o  provide transfer 

functions for orbital SAR. The use of area-extended targets fo r  this 

purpose yields the most satisfactory results. However, the use of  point 

targets i s  far simpler and may be the preferred alternative f o r  many 

situations. In either case, i t is important t o  make use of more than one 

target in  order t o  reduce uncertainties related to fading, t o  target 

deployment, or t o  measurement errors of the radar cross-section of the 

target. In addition, the sit ing of point targets and their cross-section 

relative t o  that of  the background must be carefully considered in  order to  

optimize performance. Finally, due to uncertainty in the projected swath 

location fo r  shuttle-based missions, calibration targets should be broadly 

distributed in  the range direction t o  ensure inclusion of several targets 

wi th in the image swath. 
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FIGURE CAPTIONS 

1. Map of SIR-B coverage. Each swath i s  annotated with i t s  respective 
data-take number. 

2. Typical azimuth beam-form observed by an ARC. 

3. Assumed model of SIR-B range antenna pattern used in processor. 

4. Sketch of active radar calibrator ARC deployment. 

5. PtGt as observed by the ARCS for each data-take. Angular offset is  
calculated from estimates of boresight location based upon preliminary 
ephemerides. 

6. ARC measurements normalized t o  the antenna beam-form as depicted 
in Figure 5 for each data-take. 

7. Range-averaged digital number as a function o f  azimuth location fo r  
data-take 97.2. The mean DN = 92.13 2 5.42. 

8. SIR-6 transfer functions fo r  data-takes 49.2 and 97.2. 

9. Regression of uoS I~+  as calculated from mean DN via Eq. 13 withe' as 

measured fo r  each target. 



Look Local Angle 
Date Data-take Direction of Incidence 

10/07/84 38.1 NE 17 
10/08/84 * 49.2 NW 30 

54.1 NE 38 
10/09/84 70.1 NE 50 
1 O/ 10/84 86.1 NE 59 
10/1 1/84 *97.2 sw 31 

. 

*indica tes  imaged s w a t h  contains fields co-observed by the 
truck-mounted scat terome te rs .  
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I 
I 
I Beamw idth: 

3 dB I .  Null to Null 

3 Sidelobe Level: 

Lead 
Lag 

I 
1 

Standard N of 
Mean Deviation Samples 

1.095' .038" 26 
2.42 1 " ,049" 20 

- 1 1.96 dB 0.73 dB 20 ' 

- 10.34 dB 0.74 dB 21 

Values are based upon preliminary ephermeris data. 8 
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l i  

I 
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1 

-Half Power 0.63 sec 

I 
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I -10 dB Sidelobe 

0.1 25 

0.100 

a, 0.075 0 a 
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SIR-B AZIMUTH PATTERN 

Orbit 97.2 

10/11/84 

ARC #I20 

P,G, = 86.72 dBm 

-12 dB Sidelobe 

I 

-2 -1 0 1 2 

Range Displacement from 
Estimated SIR-B Boresight 

= 3.97 krn or -3.01' 

Time (Seconds) 
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ASSUMED SIR-B RANGE PATTERN 

-20 

GR = [sinc(a - 0.3 T) + sinc 
(a + 0.3 +j* COS(A e)  

a = T LR sin(A 8)lh 

L R  = 216 cm 
A = 23.5 cm 

-1 0 0 10 

Angle Off Boresight (Degrees) 
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SIR-B ANTENNA PATTERNS FROM ARCS i 
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DIFFERENCE IN BORESIGHT POSITION AS 
MEASURED BY ARCS AND ASSUMED FROM 

. PRELIMINARY EPHEMERIS - _  
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SEE = 0.078 dB 
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Average Digital Number 
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SIR-B TRANSFER FUNCTIONS 

Orbit 49.2 CJO (dB) = 10 log (DN2 - 225) - 50.68 
Orbit 97.2 ao(dB) = 10 log (DN2 - 144) - 47.90 
AP,G, = 2.43 dB 

Orbit 

Measured Data is for 97.2 

0 rbi t 97.2 

A - Point Targets (ARCS) 

0 - Area-Extended Targets 

-30 -25 -20 -1 5 -10 - -5 0 

0' meas. (d B) 



CALIBRATION ACCURACY FOR DATA-TAKE 97.2 i 
- _  

0 

-2 

-4 

-6 

-8 

-1 0 

-1 2 

-1 4 

-1 6 

-1 8 

Truck Data 

U'SIR-B - - 10 log (DN2 - 144) -47.9 

(JOrneas = 0.96 ~ O s i R - 8  - 0.04 

N = 40 

r2 = 0.97 

I I I I I I I I I 
-1 6 -1 4 -1 2 -1 0 -8 -6 -4 -2 0 

Calculated o ~ ~ , ~ - ~  (dB) 


